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LE'ITER TO THE EDITOR 

Roughening transitions and the zero-temperature triangular 
Ising antiferromagnet 

H W J Blote and H J Hilhorst 
Laboratorium voor Technische Natuurkunde, Lorentzweg 1, 2628 CJ Delft, The Nether- 
lands 

Received 16 August 1982 

Abstrpct. The zero-temperature triangular Ising antiferromagnet is mapped onto a solid- 
on-solid (SOS) model. The system undergoes a roughening transition characterised by a 
critical exponent a = 4, by the absence of excitations in the smooth phase, and by domain 
wall excitations (stripes) in the rough phase. At infinite SOS temperature the height-height 
correlation function is explicitly calculated with the aid of known four-point king correla- 
tions. We point out that a certain six-vertex model with a comparable SOS interpretation 
has an identical critical temperature, critical exponent and critical amplitude. This is in 
support of existing ideas on universality in systems with striped phases. 

Since the solution of the triangular king model by Houtappel(1950), it is known that 
this model has a phase transition characterised by a specific heat exponent CY = 0 (there 
is no phase transition if the strongest interaction is antiferromagnetic and the remaining 
two are equal). We consider antiferromagnetic couplings Ki (which contain the inverse 
temperature as a factor), where i equals 1 ,2  or 3 and refers to the three nearest- 
neighbour bond directions on the lattice. We put Ki = K + Ai for i = 1,2 and K3 = K 
and let A1 a AZ and A1 a 0. We are interested in the limit K + -CO. In this limit, the 
condition for criticality (Houtappel 1950) goes over into a critical line in the Al, Az 
plane given by 

Y l - Y z =  1 where yi = eZ4. (1) 

Houtappel's expression for the reduced free energy per spin in the thermodynamic 
limit becomes, after subtraction of the infinite constant -K, 

f(A1, Az) = (47r)-' lo dw ln[$(yly;' +yT1y~+y;*y;' +2y;' cosw) 
25T 

(2) 

periodic boundaries being assumed. For y1- yz  a 1 we have an ordered phase. The 
expression between absolute value signs is non-negative and f reduces to 

(3) 

-1 -1 +~lYIY;'-yTIYz-yl y z  -2y;' COSWII ,  

f (Air  Az) = A i  - Az. 

For y1 - yz < 1 we have a disordered phase. Defining 

wc(A1, &)=cos [ d y l y z  -YZ-Y;~)I, (4) 
-1 1 2 -1 
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we obtain 

To find the energy, we set Ai = PEi and obtain by differentiation 
2 2 -1 Y 2 - 1  -- df -E1 -E2 +% (-2E1 +E2)  +- E2 tan (7 tan %). 

dP T 7r Y 2 + 1  2 

Figure 1 shows df/dp versus AI for the case A2 = 0. 

A1 

Figare 1. Energy in units -El of the Ising model described in the text plotted against 
Al. At AI >iln 2 the system is completely ordered. The quantity plotted along the vertical 
scale can also be interpreted as the average slope of an SOS model (see text). 

In the neighbourhood of the critical point /3 =Po the angle wC is of order (pc -P)’” 
and the leading terms of the energy are given by 

df/dS -E2- ( 2 / 7 r ) ~ 7 ~ ~ ; ~  (YZI - Y Z . E ~ ) ~ ’ ~ @ C - P ) ~ / ~ .  (7) 
From (3) we see that the specific heat vanishes in the low temperature phase. From 
(7) we see that the specific heat C obeys 

C - (pc - p p 2  as P t P c *  (8) 

Hence, in contrast to the Houtappel result for finite K, we find a specific heat exponent 
Ly =I. 
As already mentioned, the total free energy per particle also contains an infinite 

constant -K : only those configurations which have precisely one pair of parallel spins 
around each elementary triangle produce non-vanishing terms in 2. This property 
allows us to interpret the system as a roughening model. To see this, we draw solid 
lines between all pairs of antiparallel spins. As illustrated in figure 2, there is a 
one-to-one correspondence (apart from a trivial factor 2) between the allowed spin 
configurations and the coverings of the lattice by diamonds. The partition function 
Z is a sum of weighted diamond coverings. The diamond weights can be obtained 
by sharing the bond weights of nearest-neighbour spin pairs out between adjacent 
diamonds and are listed in figure 3. 

When looking at figure 2 in perspective one can consider it as the irregular surface 
of a cubic lattice, viewed from the (1,1, 1) direction. This suggests the assignment of 

1 
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Figure 2. A typical configuration of up spins (+) and down spins (--) on the triangular 
lattice. Each elementary triangular lattice face contains precisely one pair of parallel 
nearest-neighbour spins. All antiparallel nearest-neighbour pairs are connected by full 
lines. This results in a diamond covering of the lattice. 

1 

eA1 - 8 2  ~ - A I * A ~  e-AI - A2 

l a 1  I b )  

Figure 3. ( a )  Definition of the three main directions of the lattice. The coupling Ki is 
understood to act along the ith direction. (6) The Boltzmann weights of the diamonds. 

a height variable hi to each lattice site i in the following way: (i) let a given site at 
the origin have height zero; (ii) let there be, between any nearest-neighbour pair of 
sites connected by a full line, a height difference +1 or -1, depending on their relative 
position, as indicated in figure 4. Clearly no conflict arises as one travels around a 
closed loop of full lines. The height differences between nearest-neighbour sites not 
connected by a full line are easily deduced and have also been listed in figure 4. It 

Figure 4. Height differences, spin products and Boltzmann factors for pairs of nearest- 
neighbour sites i and j .  Left-hand side: i and j connected; right-hand side: i and j not 
connected. 
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is evident that the energy of a configuration of height variables can be expressed as 
a sum of interaction energies associated with nearest-neighbour height differences 
(see the last column of figure 4). Thus we have an SOS model with nearest-neighbour 
interactions, with height differences subject to the constraints imposed by the diamond 
covering. We can now analyse the phase transition expressed by equations (2)-(8) in 
terms of this SOS model. 

Because Al 3 A2, the ground state configuration is the one with a regular covering 
by diamonds of orientation 1 only (see figure 3(b)).  The corresponding SOS configur- 
ation is a completely flat, but tilted, surface. Excitations from the ground state are 
obtained by turning diamonds from orientation 1 to orientations 2 or 3. One easily 
discovers that an elementary excitation must consist of an infinite string of turned 
diamonds (each having orientation 2 or 3), running from left to right through the 
system (see figure 5 ) .  Such elementary excitations therefore cost an energy propor- 
tional to the linear size N. By a simple energy-versus-entropy argument one can find 
out if any of these excitations are present; this also produces equation (1). Diamond 
coverings with strings of excitations correspond to a surface with steps in the SOS 

picture; one step separates two levels as shown in figure 5. The density p ( A l ,  A,) of 
string excitations is equal to the density of flipped diamonds, given by 

(9) 
Thus the string density vanishes with a square root singularity at the critical tem- 
perature. 

p (Ai,  Az) = i-i aflaAl= w J A i ,  A d / r .  

Figure 5. Diamond covering with a string of flipped diamonds. In the SOS picture, the 
string forms a step on an otherwise flat surface. 

A different way to arrive at our present results is via the equivalence of the modified 
KDP model and the dimer problem on the hexagonal lattice (Wu 1968), which is equal 
to our diamond problem. It was already found by Kasteleyn (1963) that this dimer 
problem is characterised by string excitations; the exact solution by Wu (1968) showed 
that a =$ for these models. Square root singularities were also reported by Nagle 
(1975) and by Pokrovsky and Talapov (1979), and later studied in greater detail by 
others (Villain and Bak 1981, Haldane and Villain 1981); here this singularity has 
been extracted from the Ising model solution. 

Since the distance between successive strings is irregular, SOS configurations in the 
high-temperature phase have only an average tilt, and their roughness is determined 
by the fluctuations around this average. It is therefore natural to define Sh, = hi - ( h , )  
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(with (. . .) indicating the ensemble average) and to consider the height-height correla- 
tion function 

G(r)  = ((She - Sh,)'), (10) 
where 0 and r are two lattice sites a distance r apart (measured in units of the 
nearest-neighbour distance). We suppose now that the lattice vector from 0 to r is 
along one of the main crystal directions (see figure 3(a)), and that 0 and r are separated 
by the sites 1,2,  . . . , r - 1. From figure 4 we see that the height difference between 
two successive sites ( j  = i + 1) can be expressed in terms of Ising spins as 

Shi+l -Shi = -$(sisi+1- (SiSiCl)). 

Substituting this in (lo), we obtain 

This shows that the height-height correlation G(r) in the SOS model is directly 
proportional to the energy fluctuation along a line segment of length r in the Ising 
model. 

There is one special case in which we can calculate G(r)  explicitly, namely when 
AI = Az = 0 (or p = 0). This case corresponds to the zero-temperature isotropic Ising 
antiferromagnet, for which Stephenson (1970) .has calculated precisely those four-spin 
correlations which are needed in (12). His result is that 

Substituting this result in (12), we obtain after some algebra 

G(r)  = (9,"') log r +(9/.rrz)[1+ y +$log 3]+0( l /r )  (14) 

where y is Euler's constant. Thus the critical behaviour of this roughening model is 
very different from that of the ordinary roughening transition, which is of infinite 
order (van Beijeren 1977, Knops 1977, Jos6 er a1 1977). The possibility of finite-order 
roughening transitions has already been mentioned by van Beijeren, and Knops (1979) 
presented an SOS model with a = -2. Whereas in Knops' model the transition is of 
finite order due to an asymmetry between two sublattices, the obvious cause in our 
case is the string nature of the excitations. 

Haldane and Villain (198 1) emphasise that the square root singularity must be 
general for all systems with excitations of that kind. We investigate this here by 
confronting our results above with the exact analysis of a second model, namely the 
six-vertex model with reduced vertex energies el = -e2 = h +U, e3 = -e4 = h -U, e5 = 
e 6 = 0 ,  in the usual notation (Lieb and W J  1972). This system is equivalent to a 
roughening model by the van Beijeren (1977) mapping (but it is not van Beijeren's 
SOS model). The solution of this six-vertex model has been sketched by Sutherland 
et al (1967). The model has a transition to the completely polarised state at 

(eZh - 1)(e2" - I) = 1 (15) 

(Lieb and Wu 1972). We now investigate the solution near complete polarisation, 
i.e. for a relatively small number n of overturned arrows along the transfer direction, 
along the lines indicated by Lieb and Wu. Using the Bethe ansatz, one finds for a 
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vertex model of width N and periodic boundaries that the largest eigenvalue A, of 
the transfer matrix in the subspace of n excitations is given by 

n 

A, = exp[N(h + U )  - 2nu]/ n [exp(-2h - ikj) - 11 
j = l  

where the wavenumbers ki obey, for n << N, in leading order of 1/N, 

k j  = (-n - 1 + 2j)1r/N. (17) 

(18) 

(19) 

Retaining the leading combinations of powers of n and N (N >> n >> 1) leads to 
2 h  n A, ==eN("c")[e-2"/(l -e- )] (1 -n3.rr2/N224 sinh'h). 

The largest eigenvalue occurs for &/an = 0 or 

n / N  = (2/1r) sinh (h ) {2  log [e-'"/(l- e-2h)]}"2 

f (h ,  U )  = h + U  + (4&/37r) sinh(h){log [e-2"/(1 -e-2h)]}3'2. 

and the reduced free energy per particle f = limN+m (l/N) log An is given by 

(20) 
The transition is, like in our first SOS model, characterised by a = but the similarity 
goes further. When we suppress vertex 1 (el = +CO) we obtain the modified KDP 
model; the equivalence of this model with our first SOS model via the mapping of Wu 
(1968) can also be obtained directly via the one-to-one correspondence between 
strings of inverted arrows in the KDP model and strings of flipped diamonds such as 
shown in figure 5 .  If we use the equivalence h = A I ,  IJ = A I  - A2, our equation (2) 
agrees, as expected, with the free energy of the E = 0 modified KDP model (Lieb and 
Wu 1972, Wu 1968). Further, using this equivalence to express (20) in AI and A2, 
and subsequently differentiating with respect to the temperature, reproduces the 
singular part of (7) exactly. Hence the two models are equivalent at a low excitation 
density: they have the same critical temperature, critical exponent and critical ampli- 
tude. This corroborates and extends the intuitive ideas of Haldane and Villain (1981) 
on universality in systems with striped phases. 

Concluding, we have pointed out the existence of a special limiting case contained 
in the Houtappel solution of the triangular Ising model, having a specific heat exponent 
CY = and a disordered phase characterised by uniaxial domain walls (stripes), similar 
to those occuring in the floating phase of ANNNI models (Selke and Fisher 1980). 
Using a mapping onto an SOS model, we have obtained exact results for a roughening 
transition. Very similar critical behaviour is found for a second SOS model via the 
van Beijeren mapping. 
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Kasteleyn. This work is part of the research program of the 'Stichting voor Fundamen- 
tee1 Onderzoek der Materie (FOM)', which is financially supported by the 'Nederlandse 
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